Information Theoretic-based Feature Selection for Machine Learning
Three major factors that determine the performance of a machine learning are the choice of a representative set of features, choosing a suitable machine learning algorithm and the right selection of the training parameters for a specified machine learning algorithm. This thesis tackles the proble...
محفوظ في:
المؤلف الرئيسي: | Muhammad Aliyu, Sulaiman |
---|---|
التنسيق: | أطروحة |
اللغة: | English English |
منشور في: |
2018
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://ir.unimas.my/id/eprint/26595/1/Information%20Theoretic-based%20Feature%2024pgs.pdf http://ir.unimas.my/id/eprint/26595/4/Information%20Theoretic-based%20Feature%20ft.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Grey relational analysis feature selection for cancer classification using support vector machine
بواسطة: Sy. Ahmad Ubaidillah, Sharifah Hafizah
منشور في: (2014) -
EEG-based emotion classification using wavelet based features and support vector machine classifier
بواسطة: M. Razali, Normasliza
منشور في: (2015) -
Improved scheme of e-mail spam classification using meta-heuristics feature selection and support vector machine
بواسطة: Elssied Hamed, Nadir Omer Fadl
منشور في: (2015) -
Molecular similarity searching based on deep learning for feature reduction
بواسطة: Saeed Nasser, Maged Mohammed
منشور في: (2022) -
Spam filtering using bayesian technique based on independent feature selection
بواسطة: Mohamad, Masurah
منشور في: (2006)