Support vector machine and its applications for linear and nonlinear regression in the presence of outliers of high dimensional data
The ordinary least squares (OLS) is reported as the most commonly used method to estimate the relationship between variables (inputs and output) in the linear regression models because of its optimal properties and ease of calculation. Unfortunately, the OLS estimator is not efficient in cases of th...
محفوظ في:
المؤلف الرئيسي: | Sleabi, Waleed Dhhan |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2016
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://psasir.upm.edu.my/id/eprint/69129/1/FS%202016%2050%20IR.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Robust diagnostics and parameter estimation methods in linear and nonlinear regression based on nu support vector regression for high dimensional data
بواسطة: Rashid, Al-Dulaimi Abdullah Mohammed
منشور في: (2022) -
Robust techniques for linear regression with multicollinearity and outliers
بواسطة: Mohammed, Mohammed Abdulhussein
منشور في: (2016) -
A robust ridge regression estimator in the presence of outliers and multicollinearity /
بواسطة: Marina Zahari
منشور في: (2001) -
Robust Diagnostics and Estimation in Heteroscedastic Regression Model in the Presence of Outliers
بواسطة: Rana, Md. Sohel
منشور في: (2010) -
Robust Random Regression Imputation method for missing data in the presence of outliers
بواسطة: John, Ahamefule Happy
منشور في: (2013)