Iterative methods for solving nonlinear equations with multiple zeros
This thesis discusses the problem of finding the multiple zeros of nonlinear equations. Six two-step methods without memory are developed. Five of them posses third order convergence and an optimal fourth order of convergence. The optimal order of convergence is determined by applying the Kung-Tr...
محفوظ في:
المؤلف الرئيسي: | Jamaludin, Nur Alif Akid |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2018
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://psasir.upm.edu.my/id/eprint/76705/1/FS%202018%2056%20-%20IR.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
New Quarter-Sweep-Based Accelerated Over-Relaxation Iterative Algorithms and their Parallel Implementations in Solving the 2D Poisson Equation
بواسطة: Rakhimov, Shukhrat
منشور في: (2010) -
An adaptively switching iteration strategy for population based metaheuristics /
بواسطة: Nor Azlina Ab. Aziz
منشور في: (2017) -
Development of Iterative Minimum-Maximum Filter for Reducing Impulse Noise from Highly Corrupted Images
بواسطة: Jabir, Amjad Najim
منشور في: (2006) -
Modified algorithms in interval symmetric single-step procedure for simultaneous inclusion of polynomial zeros
بواسطة: Wan Mohd Sham, Atiyah
منشور في: (2014) -
Newton-Kantorovich method for solving one- and two-dimensional nonlinear Volterra integral equations of the second kind
بواسطة: Hameed, Hameed Husam
منشور في: (2016)