An Integrated Principal Component Analysis And Weighted Apriori-T Algorithm For Imbalanced Data Root Cause Analysis
Root Cause Analysis (RCA) is often used in manufacturing analysis to prevent the reoccurrence of undesired events. Association rule mining (ARM) was introduced in RCA to extract frequently occur patterns, interesting correlations, associations or casual structures among items in the database. Howev...
محفوظ في:
المؤلف الرئيسي: | Ong, Phaik Ling |
---|---|
التنسيق: | أطروحة |
اللغة: | English English |
منشور في: |
2016
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utem.edu.my/id/eprint/18350/1/An%20Integrated%20Principal%20Component%20Analysis%20And%20Weighted%20Apriori-T%20Algorithm%20For%20Imbalanced%20Data%20Root%20Cause%20Analysis.pdf http://eprints.utem.edu.my/id/eprint/18350/2/An%20Integrated%20Principal%20Component%20Analysis%20And%20Weighted%20Apriori-T%20Algorithm%20For%20Imbalanced%20Data%20Root%20Cause%20Analysis.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
A novel algorithm : apriori-ant. The combination of apriori algorithm and ants colony optimization algorithm
بواسطة: Choo, Ai Ling
منشور في: (2005) -
Generative Adversarial Network and Fuzzy ARTMAP for imbalanced data classification in condition monitoring
بواسطة: Chang, Timothy Zhi Wei
منشور في: (2023) -
Association ruleset formulation for cyberattack attribution process in cyber threat intelligence using apriori algorithm
بواسطة: Abu, Md Sahrom
منشور في: (2021) -
Dimension Reduction For Classification Using Principal Component Analysis (PCA) To Detect Malicious Executables
بواسطة: Jamal, Zalifh
منشور في: (2017) -
Support vector machine for solving imbalanced dataset problem
بواسطة: Mohd. Khairuddin, Ismail
منشور في: (2012)