Enhancing Accuracy Of Credit Scoring Classification With Imbalance Data Using Synthetic Minority Oversampling Technique-Support Vector Machine (SMOTE-SVM) Model
Credit is one of the business models that provide a significant growth. With the growth of new credit applicants and financial markets, the possibility of credit problem occurrence also become higher. Thus, it becomes important for a financial institution to conduct a preliminary selection to the cr...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
التنسيق: | أطروحة |
اللغة: | English English |
منشور في: |
2017
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utem.edu.my/id/eprint/20759/1/Enhancing%20Accuracy%20Of%20Credit%20Scoring%20Classification%20With%20Imbalance%20Data%20Using%20Synthetic%20Minority%20Oversampling%20Technique-Support%20Vector%20Machine%20%28SMOTE-SVM%29%20Model%20-%2024%20Pages.pdf http://eprints.utem.edu.my/id/eprint/20759/2/Enhancing%20Accuracy%20Of%20Credit%20Scoring%20Classification%20With%20Imbalance%20Data%20Using%20Synthetic%20Minority%20Oversampling%20Technique-Support%20Vector%20Machine%20%28SMOTE-SVM%29%20Model%20-%20Muhammad%20Tosan%20Bingamawa.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الانترنت
http://eprints.utem.edu.my/id/eprint/20759/1/Enhancing%20Accuracy%20Of%20Credit%20Scoring%20Classification%20With%20Imbalance%20Data%20Using%20Synthetic%20Minority%20Oversampling%20Technique-Support%20Vector%20Machine%20%28SMOTE-SVM%29%20Model%20-%2024%20Pages.pdfhttp://eprints.utem.edu.my/id/eprint/20759/2/Enhancing%20Accuracy%20Of%20Credit%20Scoring%20Classification%20With%20Imbalance%20Data%20Using%20Synthetic%20Minority%20Oversampling%20Technique-Support%20Vector%20Machine%20%28SMOTE-SVM%29%20Model%20-%20Muhammad%20Tosan%20Bingamawa.pdf