Threshold center-symmetric local binary convolutional neural networks for bilingual handwritten digit recognition
Arabic and English handwritten digit recognition is a challenging problem because the writing style differs from one writer to another. In middle east countries, many official forms are prepared to be written using either Arabic or English languages. However, some people fill the form using both...
محفوظ في:
المؤلف الرئيسي: | Saleh Al-Wajih, Ebrahim Qasem |
---|---|
التنسيق: | أطروحة |
اللغة: | English English English |
منشور في: |
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.uthm.edu.my/8412/1/24p%20EBRAHIM%20QASEM%20SALEH%20AL-WAJIH.pdf http://eprints.uthm.edu.my/8412/2/EBRAHIM%20QASEM%20SALEH%20AL-WAJIH%20COPYRIGHT%20DECLARATION.pdf http://eprints.uthm.edu.my/8412/3/EBRAHIM%20QASEM%20SALEH%20AL-WAJIH%20WATERMARK.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Neural-fuzzy for handwritten digits recognition
بواسطة: Lau, Hui Keng
منشور في: (2003) -
Postal address handwritten recognition using convolutional neural network / Nur Hasyimah Abd Aziz
بواسطة: Abd Aziz, Nur Hasyimah
منشور في: (2020) -
Comparative Study Between Neural Network And Statistic In Handwritten Digit Recognition
بواسطة: Noor Azliza, Sabri
منشور في: (2004) -
Iris recognition using convolutional neural network /
بواسطة: Yuan, Zhuang
منشور في: (2018) -
Aircraft recognition using convolutional neural network /
بواسطة: Nabilah Wan Zulkipli
منشور في: (2018)