Distributed hydrological model using machine learning algorithm for assessing climate change impact
Rapid population growth, economic development, land-use modifications, and climate change are the major driving forces of growing hydrological disasters like floods and water stress. Reliable flood modelling is challenging due to the spatio-temporal changes in precipitation intensity, duration and f...
محفوظ في:
المؤلف الرئيسي: | Iqbal, Zafar |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/101515/1/ZafarIqbalPSKA2022.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Stochastic dynamic programming and machine learning under climate change for reservoir and irrigation operations
بواسطة: Mohd. Nasir, Muhammad Adib
منشور في: (2022) -
Influence of seasonal hydrological variation on swash zone morphological changes
بواسطة: Othman, Norasman
منشور في: (2019) -
Flood forecasting using semi-distributed hydrological model coupled with weather research and forecasting model
بواسطة: Zaidi, Syeda Maria
منشور في: (2019) -
Modeling impacts of climate change on aridity and crop water demand in Syria
بواسطة: Houmsi, Mohamad Rajab
منشور في: (2020) -
Modelling the impacts of land-used and climate change in Skudai river watershed
بواسطة: Al-Amin, Danladi Bello
منشور في: (2018)