Modelling and forecasting volatile data by using ARIMA and GARCH models
Modelling and forecasting of volatile data have become the area of interest in financial time series. Volatility refers to a condition where the conditional variance changes between extremely high and extremely low values. In the current study, modelling and forecasting will be carried out using two...
محفوظ في:
المؤلف الرئيسي: | Miswan, Nor Hamizah |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2013
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/33227/1/NorHamizahMiswanMFS2013.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Modelling and forecasting exchange rate of US dollar against Malaysian ringgit using hybrid ARIMA-GARCH and ARIMA-EGARCH models
بواسطة: Mustafa, Asma’
منشور في: (2017) -
Modelling and forecasting flight delay at Kuala Lumpur International Airport using hybrid arima-garch model
بواسطة: Zulkeflee, Ilya Farhana
منشور في: (2019) -
Modelling of crude oil prices using hybrid arima-garch model
بواسطة: Hashim, Napishah
منشور في: (2015) -
Forecasting Stock Market Volatility Using Wavelet Transformation Algorithm Of Garch Model
بواسطة: Audu, Buba
منشور في: (2017) -
Application of Arima and Garch models in forecasting crude oil prices
بواسطة: Lee, Chee Nian
منشور في: (2009)