An evolvable block-based neural network architecture for embedded hardware
Evolvable neural networks are a more recent architecture, and differs from the conventional artificial neural networks (ANN) in the sense that it allows changes in the structure and design to cope with dynamic operating environments. Blockbased neural networks (BbNN) provide a more unified solution...
Saved in:
主要作者: | Paramasivam, Vishnu |
---|---|
格式: | Thesis |
语言: | English |
出版: |
2013
|
主题: | |
在线阅读: | http://eprints.utm.my/id/eprint/33763/5/VishnuParamsivamPFKE2013.pdf |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Parameter optimization of evolving spiking neural network with dynamic population particle swarm optimization
由: Md. Said, Nur Nadiah
出版: (2018) -
Parameter optimization of evolving spiking neural networks using improved firefly algorithm for classification tasks
由: Roslan, Farezdzuan
出版: (2018) -
Structural condition monitoring and damage identification with artificial neural network
由: Bakhary, Norhisham
出版: (2009) -
A high speed 2D convolution hardware module for image processing applications in hardware
由: Baba, Beenal
出版: (2013) -
Elliptic-curve cryptographic architectures for system-on-chip based on field programmable gate arrays
由: Irwansyah, Arif
出版: (2009)