Symmetry and double reduction for exact solutions of selected nonlinear partial differential equations
Amongst the several analytic methods available to obtain exact solutions of non-linear differential equations, Lie symmetry reduction and double reduction technique are proven to be most effective and have attracted researcher from different areas to utilize these methods in their research. In this...
محفوظ في:
المؤلف الرئيسي: | Boon, Joseph Zik Hong |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2017
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/79334/1/BoonJosephZikHongPFS2017.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
The classification of delay differential equations using lie symmetry analysis
بواسطة: Muhsen, Laheeb
منشور في: (2016) -
Painlev analysis and integrability of systems of nonlinear partial differential equations
بواسطة: Md. Nasrudin, Farah Suraya
منشور في: (2009) -
Numerical solution of fractional partial differential equations by spectral methods
بواسطة: Kanwal, Afshan
منشور في: (2019) -
Methods For Approximating And Stabilizing The Solution Of Nonlinear Riccati Matrix Delay Differential Equation
بواسطة: Mohammedali, Khalid Hammood
منشور في: (2019) -
Hybrid laplace transform solution for coupled partial differential equation of fumigant transport in stored grain
بواسطة: Lukunti, Salisu
منشور في: (2019)