Fraudulent detection model using machine learning techniques for unstructured supplementary service data
The increase in mobile phones accessibility and technological advancement in almost every corner of the world has shaped how banks offer financial service. Such services were extended to low-end customers without a smartphone providing Alternative Banking Channels (ABCs) service, rendering regular f...
محفوظ في:
المؤلف الرئيسي: | Olugbenga, Akinje Ayorinde |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/96376/1/AyoAkinjeMSC2021.pdf.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Multiple 2D self organising map network for surface reconstruction of 3D unstructured data
بواسطة: Lim, Seng Poh
منشور في: (2015) -
An adaptive intrusion detection model for dynamic network traffic patterns using machine learning techniques
بواسطة: Zainal, Anazida
منشور في: (2011) -
Supervised machine learning approach for detection of malicious executables
بواسطة: Ahmed, Yahye Abukar
منشور في: (2013) -
An Ontology-Driven Methodology To Derive Cases From Structured And Unstructured Sources
بواسطة: Manickam, Selvakumar
منشور في: (2013) -
Classification of cross site scripting web pages using machine learning techniques
بواسطة: Al-Aswer, Faisal Saleh Nasser
منشور في: (2017)