Gender dependent word-level emotion detection using global spectral speech features
In this study, global spectral features extracted from word and sentence levels are studied for speech emotion recognition. MFCC (Mel Frequency Cepstral Coefficient) were used as spectral information for recognition purpose. Global spectral features representing gross statistics such as mean of MFCC...
محفوظ في:
المؤلف الرئيسي: | Siddique, Haris |
---|---|
التنسيق: | أطروحة |
اللغة: | eng eng |
منشور في: |
2015
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://etd.uum.edu.my/4518/1/s814534.pdf https://etd.uum.edu.my/4518/2/s814534_abstract.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Dual-level segmentation method for feature extraction enhancement strategy in speech emotion recognition
بواسطة: Zaidan, Noor Aina
منشور في: (2022) -
Comparative study of hybrid spectral subtraction speech enhancement algorithms
بواسطة: Pidrus, Fatin Nabihah
منشور في: (2018) -
English-Malay Cross-Lingual Emotion Detection In Tweets Using Word Embedding Alignment
بواسطة: Lim, Ying Hao
منشور في: (2023) -
Global features extraction and clustering for writer identification of English script
بواسطة: Fadhil, Murad Saadi
منشور في: (2011) -
Multi level refinement enriched feature pyramid network for scale and class imbalance in object detection
بواسطة: Aziz, Lubna
منشور في: (2022)