Penentuan Kerelevanan Dokumen Menggunakan Rangkaian Rambatan Balik

Information retrieval (IR) is one of the Computer Science branches that deals with accessing relevant information from a database. Several search engines have been developed to assist users in retrieving the relevant information from the Internet. However, due to information overload, some search e...

全面介紹

Saved in:
書目詳細資料
主要作者: Fadhilah, Mat Yamin
格式: Thesis
語言:eng
eng
出版: 2002
主題:
在線閱讀:https://etd.uum.edu.my/491/1/FADHILAH_BT._MAT_YAMIN.pdf
https://etd.uum.edu.my/491/2/FADHILAH_BT._MAT_YAMIN.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Information retrieval (IR) is one of the Computer Science branches that deals with accessing relevant information from a database. Several search engines have been developed to assist users in retrieving the relevant information from the Internet. However, due to information overload, some search engines are still incapable of returning only the most relevant documents to the users. Hence, this research aims to explore the use of Artificial Intelligence (AI) technique, particularly neural network (NN) in measuring the relevancy of each document compared to the users requests. Backpropagation learning algorithm has been used as a basis for learning in this study. Several phases are involved, namely as the identification of the document's atributes, implementation of NN, identification of NN parameters and development of simple search engine prototype. 53 documents have been uploaded into the database for evaluation purpose. These documents have been downloaded from the Seventh International World Wide Web Conferences. The documents are then used to test with two different queries; 'metadata' and 'multimedia'. A test for 'metadata' query achieved 100 percent recall and 50 percent precision. Whereas, the test for 'muItimedia ' query achieved 75 percent recall and 60 percent precision. The result shows that the usage of NN approaches has produced a high recall. The result is also tested using fallout and generality measurement. Fallout for both queries are 6 and 5.666 percent respectively. Whereas, the generality for both queries are 4.08 and 7.54 respectively.